operator valued series and vector valued multiplier spaces

نویسندگان

c. swartz

چکیده

‎let $x,y$ be normed spaces with $l(x,y)$ the space of continuous‎ ‎linear operators from $x$ into $y$‎. ‎if ${t_{j}}$ is a sequence in $l(x,y)$,‎ ‎the (bounded) multiplier space for the series $sum t_{j}$ is defined to be‎ [ ‎m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}%‎ ‎t_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associated‎ ‎with the series is defined to be $s({x_{j}})=sum_{j=1}^{infty}t_{j}x_{j}$.‎ ‎in the scalar case the summing operator has been used to characterize‎ ‎completeness‎, ‎weakly unconditionall cauchy series‎, ‎subseries and absolutely‎ ‎convergent series‎. ‎in this paper some of these results are generalized to the‎ ‎case of operator valued series the corresponding space of weak multipliers‎ ‎is also considered.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Orlicz - Pettis Theorems for Multiplier Convergent Operator Valued Series

Let X,Y be locally convex spaces and L(X,Y ) the space of continuous linear operators from X into Y . We consider 2 types of multiplier convergent theorems for a series P Tk in L(X,Y ). First, if λ is a scalar sequence space, we say that the series P Tk is λ multiplier convergent for a locally convex topology τ on L(X,Y ) if the series P tkTk is τ convergent for every t = {tk} ∈ λ. We establish...

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning

This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...

متن کامل

operator-valued bases on hilbert spaces

in this paper we develop a natural generalization of schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. we prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. we prove that the operators of a dual ov-basis are continuous. we also de ne the concepts of bessel, hilbert ov-basis and obt...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
caspian journal of mathematical sciences

ناشر: university of mazandaran

ISSN 1735-0611

دوره 3

شماره 2 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023