operator valued series and vector valued multiplier spaces
نویسندگان
چکیده
let $x,y$ be normed spaces with $l(x,y)$ the space of continuous linear operators from $x$ into $y$. if ${t_{j}}$ is a sequence in $l(x,y)$, the (bounded) multiplier space for the series $sum t_{j}$ is defined to be [ m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}% t_{j}x_{j}text{ }converges} ] and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associated with the series is defined to be $s({x_{j}})=sum_{j=1}^{infty}t_{j}x_{j}$. in the scalar case the summing operator has been used to characterize completeness, weakly unconditionall cauchy series, subseries and absolutely convergent series. in this paper some of these results are generalized to the case of operator valued series the corresponding space of weak multipliers is also considered.
منابع مشابه
Operator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملOperator-valued bases on Hilbert spaces
In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...
متن کاملOrlicz - Pettis Theorems for Multiplier Convergent Operator Valued Series
Let X,Y be locally convex spaces and L(X,Y ) the space of continuous linear operators from X into Y . We consider 2 types of multiplier convergent theorems for a series P Tk in L(X,Y ). First, if λ is a scalar sequence space, we say that the series P Tk is λ multiplier convergent for a locally convex topology τ on L(X,Y ) if the series P tkTk is τ convergent for every t = {tk} ∈ λ. We establish...
متن کاملOperator Valued Hardy Spaces
We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملoperator-valued bases on hilbert spaces
in this paper we develop a natural generalization of schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. we prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. we prove that the operators of a dual ov-basis are continuous. we also dene the concepts of bessel, hilbert ov-basis and obt...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
caspian journal of mathematical sciencesناشر: university of mazandaran
ISSN 1735-0611
دوره 3
شماره 2 2014
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023